Recognition of Human Motion through a Fuzzy Hidden Markov Model

نویسندگان

  • Xucheng Zhang
  • Fazel Naghdy
چکیده

A new type of Hidden Markov Model (HMM) developed based on the fuzzy clustering result is proposed for identification of human motion. By associating the human continuous movements with a series of human motion primitives, the complex human motion could be analysed as the same process as recognizing a word by alphabet. However, because the human movements can be multipaths and inherently stochastic, it is indisputable that a more sophisticated framework must be applied to reveal the statistic relationships among the different human motion primitives. Hence, based on the human motion recognition results derived from the fuzzy clustering function, HMM is modified by changing the formulation of the emission and transition matrices to analyse the human wrist motion. According to the experimental results, the complex human wrist motion sequence can be identified by the novel HMM holistically and efficiently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Capturing Human Motion based on Modified Hidden Markov Model in Multi-View Image Sequences

Human motion capturing is of great importance in video information retrieval, hence, in this paper, we propose a novel approach to effectively capturing human motions based on modified hidden markov model from multi-view image sequences. Firstly, the structure of the human skeleton model is illustrated, which is extended from skeleton root and spine root, and this skeleton consists of right leg...

متن کامل

Hidden Markov Models for Gesture Recognition

Understanding human motions can be posed as a pattern recognition problem. Humans express time-varying motion patterns (gestures), such as a wave, in order to convey a message to a recipient. If a computer can detect and distinguish these human motion patterns, the desired message can be reconstructed, and the computer can respond appropriately. This thesis describes an approach to recognize do...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006